

A Guideline for the Practice of Echocardiography in the Cardiovascular Screening of Sports Participants

A Joint Policy Statement of the British Society of Echocardiography and Cardiac Risk in the Young

Lead Authors

Dr David Oxborough (Lead), Dr Abbas Zaidi, Dr Sabiha Gati, Dr Michael Papadakis, Dr Nabeel Sheikh, Prof Sanjay Sharma

Education Committee Authors:

Dr Rick Steeds (Chair), Alison Carr, Dr Richard Jones, Dr Prathap Kanagala, Dr Daniel Knight, Dr Thomas Mathew, Dr Kevin O'Gallagher, Dr Bushra Rana, Dr Liam Ring, Julie Sandoval, Martin Stout, Gill Wharton, Dr Richard Wheeler

Abbreviations and Definitions

HCM	Hypertrophic Cardiomyopathy
DCM	Dilated Cardiomyopathy
LVH	Left Ventricular Hypertrophy
ARVC	Arrhythmogenic Right Ventricular Cardiomyopathy
LAD	Left Anterior Descending Artery
LV	Left Ventricle
LA	Left Atrium
RV	Right Ventricle
RA	Right Atrium
IVSd	Inter-ventricular Septal Wall Thickness
LVPWd	Posterior Wall Thickness
LVDd	End Diastolic Diameter
EDV	End Diastolic Volume
SV	Stroke Volume
EF	Ejection Fraction
LA Size	Left Atrial Diameter
LVNC	Left Ventricular Non Compaction
LBBB	Left Bundle Branch Block
RBBB	Right Bundle Branch Block
RWT	Relative Wall Thickness

Eccentric Hypertrophy / Remodelling – Is a cardiac chamber response to increased preload and manifests as a larger cavity and proportional increased wall thickness in order to balance an elevated wall stress.

Concentric Hypertrophy / Remodelling – Is a cardiac chamber response to elevated afterload and manifests as an increase in wall thickness (of any walls) without a concomitant increase in cavity dimension.

Introduction

Which conditions to look out for? This British Society of Echocardiography (BSE) document is endorsed by Cardiac Risk in the Young (CRY) and is aimed at providing guidance for the use of echocardiography in screening young athletes (ages 14 to 35 years) for inherited cardiac disease. Sudden cardiac death (SCD) in young athletes is relatively rare however its impact is devastating to the individual, their family and the wider community. The causes of SCD in the athletic population have been relatively well reported^{1,2,3} (see Figure 1) and therefore cardiac screening is aimed at identifying these conditions.

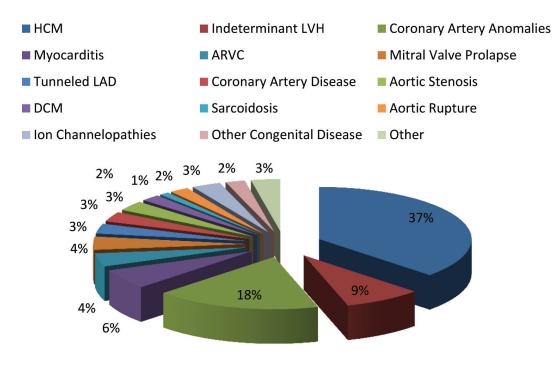
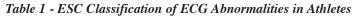



Figure 1 - Causes of Sudden Cardiac Death in the Athletic Population

The ECG should be the first investigation. Current European recommendations for cardiac screening of the athlete state that the electrocardiogram (ECG) should be the primary investigation. The ECG should be interpreted in accordance with specific European Society of Cardiology (ESC) guidelines⁴ (see table 1) and in the context of the individuals' symptoms, family history and clinical examination. Transthoracic echocardiography (TTE) is recommended if an athlete presents with Group 2 ECG changes (see below), cardiovascular symptoms, abnormal physical examination findings or a family history of sudden death under the age of 40.

ESC Classification of ECG Abnormalities in athletes			
Group 1 (training-related)	Group 2 (training-unrelated)		
Sinus Bradycardia	T-wave inversions		
First degree AV Block	ST-segment depression		
Incomplete RBBB	Pathological Q-waves		
Early Repolarisation	Left Atrial Enlargement		
Isolated QRS voltage criteria for LVH	Left axis deviation / left anterior hemiblock		
	Right axis deviation / left posterior hemiblock		
	Right Ventricular Hypertrophy		
	Ventricular pre-excitation		
	Complete LBBB or RBBB		
	Long QT or short QT interval		
	Brugada-like early repolarisation		

Parameter	Endurance-	Resistance-	Sedentary	P-value (All
	Trained (ET)	Trained (RT)	Controls (CT)	groups)
LV mass (g)	232 (200-260)	220 (205-234)	166 (145-186)	P<0.001
	[n=64; 1099]	[n=25; 510]	[n=59; 1239]	
IVSd(mm)	11.0 (10.8-11.3)	11.0 (10.3-11.8)	9.2 (8.9-9.5)	P<0.001
	[n=68; 1802]	[n=19; 408]	[n=63; 1352]	
LVPWd (mm)	10.6 (10.3-10.9)	10.4 (9.8-10.9)	8.8 (8.6-9.1)	P<0.001
	[n=57; 1928]	[n=14; 370]	[n=53; 1433]	
LVDd (mm)	54.8 (54.1-55.6)	52.4 (51.2-53.6)	50.1 (49.5-50.7)	P<0.001
	[n=61; 1548]	[n=17; 384]	[n=56; 1174]	
LVEDV (ml)	171 (157-185)	131 (120-142)	135 (125-145)	P<0.001
	[n=34; 493]	[n=14; 189]	[n=34; 539]	
LV SV (ml)	106 (97-116)	86 (77-95)	83 (77-90)	P<0.001
	[n=28; 479]	[n=9; 125]	[n=27; 590]	
LV EF (%)	63 (61-64)	66 (62-70)	64 (62-65)	P=0.365
	[n=42; 1330]	[n=7; 85]	[n=37; 878]	
LV E/A	2.0 (1.9-2.1)	1.9 (1.7-2.0)	1.8 (1.7-1.9)	P=0.014
	[n=34; 844]	[n=8; 214]	[n=34; 868]	
LV e'	13.6 (12.3-14.9)	*	11.0 (9.4-12.6)	P=0.014
	[n=7; 204]	[n=1; 16]	[n=4; 183]	
RV mass (g)	91 (63-119)	*	37 (24-50)	P<0.01
	[n=5; 116]		[n=4; 102]	
RVD1(mm)	33.5 (21.0-46.0)	*	26.1 (16.1-36.1)	P=0.347
	[n=4; 140]		[n=4; 95]	
RVEDV (ml)	222 (216-227)	*	156 (153-159)	P=0.627
	[n=6; 136]		[n=6; 150]	
RV SV (ml)	114 (115-122)	*	94 (92-98)	P=0.415
[n=5; 66]			[n=4; 66]	
LA Size (mm)	39.2 (35.9-42.5)	31.9 (29.7-34.1)	34.9 (31.9-37.9)	P<0.001
	[n=10; 206]	[n=2; 58]	[n=11; 243]	

Table 2 - Structural and Functional Parameters in Endurance and Resistance Athletes – data is presented as mean (lower and upper limits) [number of studies, pooled sample size]

A full standard echo should be performed. The athlete's TTE should be performed according to the BSE Minimum Dataset for a Standard Transthoracic Echocardiogram in an Adult, and should also take into account recommendations made in the Supplementary Protocols for (i) Comprehensive Assessment of the Right Heart and (ii) the Assessment of Diastolic Function. Details of where and how to measure these echo parameters are given in these three protocols, which are available on-line at www.bsecho.org. There are however, additional elements that may be considered optional in non-athletes that become mandatory for accurate interpretation of the athlete's echocardiogram. If there is evidence of an abnormality, other supplementary guidelines may then become relevant and should be utilised. For example, the application of this protocol may identify RV enlargement and possible dysfunction and it would therefore be pertinent to then utilise the ARVC protocol to obtain further diagnostic information.

Type of athletic activity should be known. It is important to use the BSE normative values based on sex and age but take account of the type of sporting activity performed. All echocardiographers involved in cardiac screening should have an understanding of the physiological adaptation in cardiac structure and function to regular exercise. The main adaptation is eccentric hypertrophy of all cardiac chambers but this can be variable depending on the type and volume of exercise training. Table 2 is adapted from a recent systematic review and meta-analysis⁵ that highlights normal ranges for trained athletes. This includes those that engage in resistance activity and endurance activity. Resistance activity is defined as anaerobic isometric exercise at incremental workloads of 40-60% of maximum heart rate and includes sporting disciplines such as martial arts, windsurfing, weight-lifting. Endurance activity is defined as aerobic isotonic dynamic exercise at incremental workloads of 70-90% of maximum heart rate

loads of 70-90% of maximum heart rate and includes sporting disciplines such as long and middle distance running, swimming or cycling, soccer and basketball. It is important to note that many sporting disciplines involve a combination of resistance and endurance exercise such as boxing, rugby, rowing and American football and therefore there is likely to be an overlap in normal ranges.

Specific algorithms have been included at the end of this document to provide a systematic approach when absolute values fall outside of the BSE normal range. It is important to note that these should be used as guidance only and if in any doubt further investigations should be considered.

Amount of athletic activity should be known. When screening patients for inherited cardiac disease due to a family history, the referring physician / echocardiographer should establish the patient's level of physical activity. The total volume of training can be defined as (volume = intensity x duration) or Metabolic Equivalent (MET-h/week = METS x duration). An example of a select range of sporting disciplines and their specific METS is highlighted in table 3⁶. In summary, low-intensity exercise is defined as corresponding to 1.8 to 2.9 METS, moderate-intensity is defined as corresponding to 3-6 METS and high-intensity exercise is defined as > 6 METS.

PAGE 3

Pre-Echocardiographic Information

exercise intensity

The aim of the TTE is to differentiate physiological adaptation from pathological abnormality where possible. Therefore it is vital that the echocardiographer knows the main pathological conditions that may be found and must be aware of normal variation in response to exercise. The extent and nature of physiological cardiac adaptation in the athlete's heart is based on a number of factors, and an attempt should be made to obtain information on each of these before the TTE is performed. This should include the list of information presented in Figure 2. Although a standard minimum dataset is recommended for all echocardiograms, prior knowledge of these demographics and ECG findings will help to focus the examination, aid interpretation of findings and contribute to the subsequent management of the athlete.

Sporting Discipline	Metabolic Equivalent (MET)	Sex
Soccer	10.0	FHx of
Running (6 mph)	10.0	unexplained cardiac destrict
Running (7.5 mph)	12.5	death < 40 years
Running (10.9 mph)	18.0	
Cycling (>20 mph) racing	16.0	
Cycling (<10 mph) leisure	4.0	Type of
Cricket	5.0	Sport and Level Echocardiographic
Rugby	10.0	Focus and
Tennis (singles)	8.0	Interpretation
Hockey	8.0	
Boxing	12.0	
Golf	4.5	Training Volume BS/
Rowing (competitive)	12.0	
Swimming (leisure)	6.0	
Swimming (competitive)	10.0	Symptoms Group 2 ECG

Figure 2 - Pre-Echocardiographic Information

Sex	Cardiac chamber dimensions in female athletes rarely fall outside of the established 'normal range'. If they do, furth investigation is required ^{5,7} . It is more common for male athletes to demonstrate a degree of eccentric remodeling of all cardiac chambers ^{5,8} .			
Age	Highly trained junior athletes still develop cardiac remodelling in response to physiological conditioning ^o however this is often at a lower magnitude than in senior athletes. That aside, where structural values fall outside the BSE 'normal range' functional assessment is key.			
Ethnicity	LV ¹⁰ and RV ¹¹ cavity sizes are similar between African / Afro-Carribean and white athletes however wall thicknesses and LA size are often larger in the African/Afro-Carribean athlete ¹² . Any wall thickness measurement with a value greater than 12mm in white athletes and greater than 14mm ¹⁰ in African/Afro-Carribean male or 13mm ¹³ in African/Afro-Carribean female athletes requires further investigation. There is a lack of data pertaining to the structure and function of Asian athletes although there is no significant differ- ence in ECG findings between West Asian and Caucasian athletes ¹⁴ . The lack of available data on Asian ethnicity suggests that standard criteria as applied to Caucasian athletes should be utilised ¹⁵ .			
Body Surface Area (BSA)	The relationship between body size and chamber dimensions is well established ^{8,16} and therefore all chamber dimensions should be indexed for body surface area. That aside, cardiac adaptation to exercise involves eccentric hypertro- phy beyond what may be attributable to body composition alone ^{5,8} . In the extremes of height and weight (BSA > 2.3m ²) non-indexed LV wall thickness and diastolic diameter should not exceed 14mm and 65mm respectively ¹⁷ .			
Symptoms	A positive history including exertional chest pain, syncope or near-syncope, irregular heartbeat or palpitations, short- ness of breath or fatigue out of proportion with the degree of exertion should direct the echocardiographer to closely assess for potential causes of cardiac sudden death ⁴ (see figure 1). Symptoms are not specific and therefore it is important to ensure all possible causes are excluded. That aside it is important to be aware that exertional chest pain may direct further evaluation for coronary anomalies whilst syncope may be related to outflow obstruction or an arrhythmogenic substrate such as ARVC or HCM.			

Group 2 ECG Changes	The type of ECG changes that are present on an athlete's ECG will further guide the focus of the examination. For example T-wave inversion in leads V1-V3 would direct a more focused assessment of the right heart. Lateral T-wave inversion is considered pathological and warrants further investigation.
Training Volume / Level	Elite athletes are likely to demonstrate a greater degree of physiological cardiac adaptation than those athletes who train at a much lower intensity.
Sporting Type	It is apparent that specific sporting disciplines create a specific stimulus that directs the degree of eccentric hypertro- phy. Endurance athletes (cyclists, rowers, long distance runners) are likely to have a greater degree of eccentric hyper- trophy of all chambers than athletes who engage in sport of a combined stimulus (soccer, tennis, hockey) or strength (powerlifting, wrestling, judo) ^{5,8,18,19} . As a guideline a RWT > 0.5 may be of particular concern.

Table 4 - Considerations for each of the specific pre-examination factors

Echocardiographic Examination

The following protocols should be strictly adhered to in order to exclude pathology:

- BSE Minimum Dataset
- BSE protocol for the assessment of LV diastolic function
- BSE protocol on the assessment of the right heart with a focus on ARVC
- BSE protocol for HCM
- BSE protocol for DCM (in preparation)

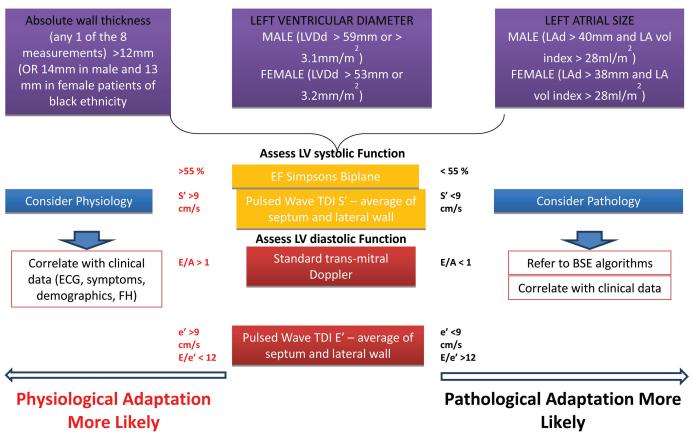
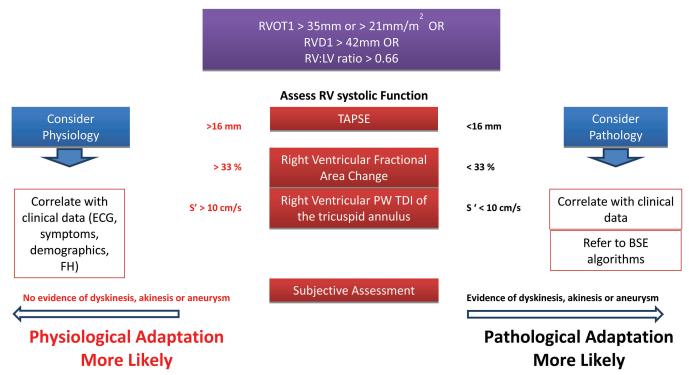
In addition the following image acquisition should be made.

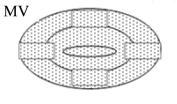
VIEW & MODALITY	EXPLANATORY NOTE	IMAGE
PSAX AV LEVEL (2D)	Identify Coronary Ostia	0X1 S5-1 40Hz 11Cm Cin 60 Ci 20 S 30 /0 75 mm/s PR 1A 32 19 BPM
PSAX BASAL LV LEVEL (2D)	LV wall thicknesses should be measured at end diastole from the basal anterior septum, inferior septum, posterior wall and lateral wall.	0x1 * Larght 0.988 cm 85-1 * Larght 0.988 cm 404z * Larght 1.17 cm 14cm * Larght 1.02 cm Pittern 6 r 60 6 20 75 mm/s Pittern 1.3.2 Pittern 56 Base 56
PSAX MID LV LEVEL (2D)	LV wall thicknesses should be measured at end diastole from the mid anteri- or septum, inferior septum, posterior wall and lateral wall.	0X1 + tergth 0.088 mm 0 125.1 + tergth 1.02 cm 14cm = tergth 1.05
PSAX MID TO APICAL LEVEL (2D)	Excess trabeculation is a common finding in elite athletes particularly of African / Afro-Caribbean ethnicity20. Left Ventricular Non-Compaction (LVNC) Cardiomyopathy needs to be excluded but making this diagnosis in an athlete may be challenging.	If If<

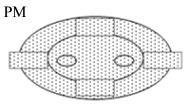
Data Interpretation

The following algorithms highlight possible interpretation of the athlete's echocardiogram when absolute values fall outside the BSE normal range. A reporting template adapted from Cardiac Risk in the Young is appended at the end of this document.

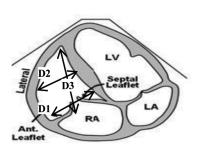
Figure 3 - Algorithm when Left Sided Parameters Fall Outside Normal BSE Ranges

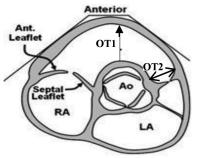




Figure 4 - Algorithm when Right Sided Parameters fall Outside BSE Normal Ranges



Reporting Template


Name	Rate + Rhythm	
ID	DOB	
Operator		


LV Wall Thickness

Right Heart

Minimum LV Dataset						
LA		mm	LVOT Vmax		m/s	
Ао		mm	LVOT VTI		cm	
LVES		mm	MV E/A	/	m/s	
LVED		mm	DecT		ms	
MR 0-4	AR	0-4	Septal E'/A'	/	cm/s	
LCA ostium	🗆 seen	\Box not seen	Lateral E'/A'	/	cm/s	
RCA ostium	🗆 seen	\Box not seen	Desc Ao Vmax		m/s	
AV Vmax		m/s				

Minimum RV Dataset					
TR	0-4 PR	0-4			
TR max PG	mmHg	≤35			
RVOT Vmax	m/s				
RVOT VTI	cm				
TAPSE	mm	≥16			
IVC (max / min)	/ mm				
CW + PW TV inflow	Image acquired?				
RV-focused A4C	Image acquired?				
TV annulus TDI	Image acquired? □□				

Additional Measurements					
RVOT plax	mm	≤33	RAA	cm ²	≤18
RVOT1	mm	\leq 35	RVFW Thickness	mm	≤ 5
RVOT2	mm	≤ 27	PR end PG	mmHg	
RVD1	mm	≤42	TV E/A	/	
RVD2	mm	\leq 35	RV E'/A'	/	
RVD3	mm	≤86	RV S'	cm/s	≥ 10

Comments:

References

- Maron B, Thompson P, Ackerman M et al. 2007 Recommendations and Considerations Related to Preparticipation Screening for Cardiovascular Abnormalities in Competitive Athletes: 2007 Update: A Scientific Statement From the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: Endorsed by the American College of Cardiology Foundation. *Circulation* 115:1643-1655
- 2. Basso C, Corrado D, Thiene GM 1999 Cardiovascular Causes of Sudden Death in Young Individuals Including Athletes. *Cardiology in Review* 1999;7(3):127-135
- de Noronha SV, Sharma S, Papadakis M, Desai S, Whyte G, Sheppard MN. Aetiology of sudden cardiac death in athletes in the United Kingdom: a pathological study. *Heart*. 2009 Sep;95(17):1409-14.
- 4. Corrado D, Pelliccia A, Heidbuchel H et al. 2010 European Society of Cardiology (ESC) classification of ECG abnormalities in athletes. *Eur Heart J* 31: 243-259.
- 5. Utomi V, Oxborough D, Whyte G, Somauroo J, Sharma S, Shave R et al. 2013 Systematic Review and Meta Analysis of Training Mode, Imaging Modality and Body Size Influences on the Morphology and Function of the Male Athlete's Heart. *Heart* in press
- 6. Ainsworth B, Haskell W, Leon A, Jacobs D, Montoye H, Sallis J, Paffenbarger R. 1993 Compendium of Physical Activities: classification of energy costs of human physical activities. *Med Sci Sports Ex* 25(1):71-80
- 7. Whyte G, George K, Nevil A, Shave R, Sharma S, McKenna W. 2004 Left Ventricular Morphology and Function in Female Athletes: A Meta-Analysis. *Int J Sports Med.* 25:380-383
- 8. Oxborough D, Sharma S, Shave R, Whyte G, Birch K, Artis N et al. 2011 The right ventricle of the endurance athlete: the relationship between morphology and deformation. *J Am Soc Echocardiogr* 25(3):263-271
- 9. Makan J, Sharma S, Firoozi S, Whyte G, Jackson P, McKenna W 2005. Physiological upper limits of ventricular cavity size in highly trained adolescent athletes. *Heart* 91:495-99
- Basavarajaiah S, Boraita A, Whyte G, Wilson M, Carby L, Shah A et al. 2008 Ethnic Differences in Left Ventricular Remodeling in Highly-Trained Athletes: Relevance to Differentiating Physiologic Left Ventricular Hypertrophy From Hypertrophic Cardiomyopathy. *Journal of the American College of Cardiology*, 51, 2256-2262.
- 11. Zaidi A, Ghani S, Sharma R, Oxborough D, Panoulas V, Sheikh N et al. Physiologic right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. *Circulation* in press
- 12. Papadakis M, Wilson M, Gahni S, Kervio G, Carre F, Sharma S 2012 Impact of ethnicity upon cardiovascular adaptation in competitive athletes: relevance to preparticipation screening. *Br J Sports Med* 46(suppl 1): i22-i28
- 13. Rawlins J, Carre F, Kervio G, Papadakis M, Chandra N, Edwards G. et al. 2010 Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. *Circulation* 121:1078–85
- 14. Wilson MG, Chatard JC, Carre F, et al. 2012 Prevalence of electrocardiographic abnormalities in West-Asian and African male athletes. *Br J Sports Med* 46: i41–i47.
- 15. George, K.P., Warburton, D.E.R., Oxborough, D., Scott, J.M., Esch, B.T.A., Williams, K., et al 2011. Upper Limits of Physiological Cardiac Adaptation in Ultramarathon Runners. *Journal of the American College of Cardiology*, 57, 754-755.
- 16. George, K. P., Batterham, A. M. & Jones, B. 1998. The impact of scalar variable and process on athlete-control comparisons of cardiac dimensions. *Medicine & Science in Sports & Exercise*, 30, 824-830
- 17. Riding N, Salah O, Sharma S, Carre F, O'Hanlon R, George K et al. 2012 Do big athletes have big hearts? Impact of extreme anthropometry upon cardiac hypertrophy in professional male athletes. *Br J Sports Med* 46: i90-i97
- 18. D'andrea A, Riegler L, Golia E, Cocchia R, Scarafile, R, Salerno G. et al. 2013. Range of right heart measurements in top-level athletes: The training impact. *International Journal of Cardiology* 164: 48-57
- 19. Spence, A.L., Naylor, L.H., Carter, H.H., Buck, C.L., Dembo, L., Murray, C.P., Watson, P., Oxborough, D., George, K.P. and Green, D.J. 2011. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. *Journal of Physiology*, 589, 5443-5452
- 20. Gati S, Chandra N, Bennett R, Reed M, Kervio G, Panoulas V et al 2013. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? *Heart*, 99(6), 401-8